Access courses

Machine Learning Python Course

What will I learn?

Mek yu get di páwa fɔ data Ƿith wi Mashin Lɛ́ni Páitɔn Kos, we wi mek spesheli fɔ Biznɛs Intɛlijɛns pɔsin dɛn. Go dip insai data luk-luk ɛn análais, lan gud-gud bɔt aw fɔ pripea data, ɛn yuz ɔl di gud tin dɛn we mashin lɛ́ni algorithm dɛn gɛt lɛk linia rígrɛshɔn ɛn disizhɔn triz. Lan aw fɔ mek ficha, tren mɔdel, ɛn jɔj am, ɛn mek yu mɔdel wok bɛtɛ Ƿith haipárámitá tunin. Fins Ƿith aw fɔ put di mɔdel fɔ wok ɛn raít dɔkyúmɛnteshɔn, fɔ mek shɔ se yu skil dɛn rɛdi fɔ yuz am insai di wok we de go ɔn. Jɔin naw fɔ mek yu BI skil go ap!

Apoia's Unique Features

Accessible online course for a lifetime
Certificate aligned with educational standards
Printable PDF summaries
Online support available at all times
Select and arrange the chapters you wish to study
Set your own course workload
Instant feedback on practical activities
Study anytime, no internet required

Develop skills

Enhance your practical skills in the areas listed below.

Lan aw fɔ put mɔdel fɔ wok: Sev, lod, ɛn raít dɔkyúmɛnt bɔt mɔdel dɛn fɔ mek i wok fayn.

Mek ficha ɛnjiniárín go bɛtɛ: Mek intárakshɔn ficha dɛn ɛn pul data insaít dɛn we de sho tɛm.

Mek mɔdel trenín go fayn: Yuz tren-tɛst split ɛn jɔj Ƿith mítrik dɛn.

Luk insai data fayn: Análais data strakchɔ ɛn lod data set yuzin Pándaz.

Mek priprósesín skil dɛn go fayn: Nómalaís, skel, ɛn ínkɔd kátégɔ́rikal data kwik-kwik.

Suggested summary

Workload: between 4 and 360 hours

Before starting, you can modify the chapters and the workload.

  • Choose which chapter to start with
  • Add or remove chapters
  • Increase or decrease the course workload

Examples of chapters you can add

You will be able to generate more chapters like the examples below

This is a free course, focused on personal and professional development. It is not equivalent to a technical, undergraduate, or postgraduate course, but it offers practical and relevant knowledge for your professional journey.