Python For Machine Learning Course
What will I learn?
Notlolla matla a Python bakeng sa thuto ea mochini ka thupelo ea rona e akaretsang e etselitsoeng litsebi tsa theknoloji. Kena ka har'a li-algorithm tsa regression tse kang Random Forests le Decision Trees, tseba litekanyetso tsa tlhahlobo ea mohlala joalo ka RMSE le MAE, 'me u hlahlobe mekhoa ea ho lokisa data e kenyelletsang ho lekanya likarolo le ho kenya khoutu. Ntlafatsa tsebo ea hau ka mekhoa ea khetho ea likarolo, litokomane tsa morero, le lilaebrari tsa Python tse kang NumPy le Pandas. Ntlafatsa mehlala ka ho fetola li-hyperparameter le mekhoa ea kopano. Kena hona joale ho phahamisa boiphihlelo ba hau thutong ea mochini.
Apoia's Unique Features
Develop skills
Enhance your practical skills as listed below
Tseba regression: Kenyelletsa Random Forests, Decision Trees, le Linear Regression.
Hlahloba mehlala: Sebelisa RMSE, MAE, le cross-validation bakeng sa litekanyetso tsa ts'ebetso.
Lokisa data: Leka likarolo, sebetsana le data e sieo, 'me u kenye mefuta e fapaneng.
Ntlafatsa mehlala: Sebelisa hyperparameter tuning, mekhoa ea kopano, le maqheka a ho batla.
Sekaseka data: Sebelisa NumPy, Pandas, Matplotlib, le Seaborn bakeng sa lintlha tsa data.
Suggested summary
Workload: between 4 and 360 hours
Before starting, you can adjust the chapters and workload.
- Choose your starting chapter
- Add or remove chapters
- Alter the total course workload
Examples of chapters you can include
You'll be able to generate additional chapters similar to the examples below
This is a free course focused on personal and professional development. It is not equivalent to a technical, undergraduate, or postgraduate course, but provides practical and relevant knowledge for your career.